

# **Nuclear Engineering**

Dr. Seungjin Kim Instructors: Dr. Shripad Revankar

# Sensitivity of Radiological Dose Projections to Weather Conditions for Advanced Reactor Technologies

Dr. Todd Smith Jeff Kowalczik

MacKenzie Coon, Thomas Duane, Arjun Mannem, Zane Zmola

## Background

- 10-mile Emergency Planning Zones (EPZs) are required around every NPP.
- Advanced Reactors have design features that allow for scalable EPZ sizes.
- A proposed rulemaking would set EPZ boundaries at the maximum distance where dose remains less than 1 rem (TEDE) over 96 hours.

### **Constraints**

- SMR source term
- rem at 2-miles
- 96 hour dose projection

# **RASCAL Source Term**

RASCAL utilizes LWR fuel nuclide inventory for defined accident scenarios. Base case gives 1 rem at 2-miles.

#### LOCA

- 36% clad damage
- No containment
- Core uncovers in 1 hour

#### LTSBO

- 1% core melt
- 8%/hr containment leakage
- Core uncovers in 8 hours

#### **Problem Statement**



How sensitive are dose projections to weather phenomena? What is the impact on EPZ size?

# **Using RASCAL for Dose Projections**



# **Weather Sensitivity Analysis**

Results displayed for LTSBO as the findings were more pronounced than LOCA.



- 4 mph Wind Speed
- Stability Class D Variable Rain
- Winds to the South

# 1 rem Isodose Distance vs. Plume Angle **Wind Speed Sensitivity Analysis**

Degrees

---One ----Two ----Three ----Four ----Five -----Six -----Seven

Variable Wind Speed (m/s)

Stability Class D

Winds to the South

#### 1 rem Isodose Distance vs. Plume Angle **Stability Class Sensitivity Analysis**



- 4 mph Winds Variable Stability Class
- Winds to the South No Rain

- No Rain
- How do conservative assumptions impact EPZ size determination?

#### **Unstable Weather Plume Footprint**



#### **Parameter Analysis Results**

- Conservative modeling assumptions will drive EPZ size farther out.
- A higher dose farther out necessitates a larger EPZ.
- But do conservative and unrealistic assumptions provide meaningful results?

## LTSBO Realistic Weather with Rain





What is the importance of realistic weather and source term assumptions for EPZ size?

**LOCA Realistic Weather Early Release** 



#### **Stable Weather Plume Footprint**



#### Realistic Weather Scenario

- Uses actual weather data from reference site.
- The wind variation is the same for the rain and no-rain conditions.
- Stability class was estimated from tabularized Pasquill Stability Class data.

#### LTSBO Realistic Weather No Rain



#### LOCA Realistic Weather Delayed (6 day) Release



# Conclusions

- EPZ size is sensitive to weather related phenomena. Wind speed and persistence, stability class, and precipitation are all important.
- Dispersion modeling is important: many factors vary significantly within a short distance, creating large variation in dose-at-distance.
- Release timing and release rate are important to the sensitivity analysis.

# **Insights and Recommendations**

- Realistic, site-specific weather patterns should be used for EPZ size determination analyses as opposed to simple, conservative assumptions.
- Designers of advanced reactors can minimize source term or delay potential releases to reduce emergency planning needs.
- The NRC may want to consider technology-neutral source term models for RASCAL to enhance emergency response capabilities.